Controlled Stochastic Differential Equations under Poisson Uncertainty and with Unbounded Utility

نویسندگان

  • KEN SENNEWALD
  • Ken Sennewald
چکیده

The present paper is concerned with the optimal control of stochastic differential equations, where uncertainty stems from one or more independent Poisson processes. Optimal behavior in such a setup (e.g., optimal consumption) is usually determined by employing the Hamilton-Jacobi-Bellman equation. This, however, requires strong assumptions on the model, such as a bounded utility function and bounded coefficients in the controlled differential equation. The present paper relaxes these assumptions. We show that one can still use the Hamilton-Jacobi-Bellman equation as a necessary criterion for optimality if the utility function and the coefficients are linearly bounded. We also derive sufficiency in a verification theorem without imposing any boundedness condition at all. It is finally shown that, under very mild assumptions, an optimal Markov control is optimal even within the class of general controls. JEL-Classification: C61

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

Energy Scheduling in Power Market under Stochastic Dependence Structure

Since the emergence of power market, the target of power generating utilities has mainly switched from cost minimization to revenue maximization. They dispatch their power energy generation units in the uncertain environment of power market. As a result, multi-stage stochastic programming has been applied widely by many power generating agents as a suitable tool for dealing with self-scheduling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005